Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis.

نویسندگان

  • T Gardella
  • P Medveczky
  • T Sairenji
  • C Mulder
چکیده

A simple gel technique is described for the detection of large, covalently closed, circular DNA molecules in eucaryotic cells. The procedure is based on the electrophoretic technique of Eckhardt (T. Eckhardt, Plasmid 1:584-588, 1978) for detecting bacterial plasmids and has been modified for the detection of circular and linear extrachromosomal herpesvirus genomes in mammalian cells. Gentle lysis of suspended cells in the well of an agarose gel followed by high-voltage electrophoresis allows separation of extrachromosomal DNA from the bulk of cellular DNA. Circular viral DNA from cells which carry the genomes of Epstein-Barr virus, Herpesvirus saimiri, and Herpesvirus ateles can be detected in these gels as sharp bands which comigrate with bacterial plasmid DNA of 208 kilobases. Epstein-Barr virus producer cell lines also show a sharp band of linear 160-kilobase DNA. The kinetics of the appearance of this linear band after induction of viral replication after temperature shift parallels the known kinetics of Epstein-Barr virus production in these cell lines. Hybridization of DNA after transfer to filters shows that the circular and linear DNA bands are virus specific and that as little as 0.25 Epstein-Barr virus genome per cell can be detected. The technique is simple, rapid, and sensitive and requires relatively low amounts of cells (0.5 X 10(6) to 2.5 X 10(6)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inversion and circularization of the varicella-zoster virus genome.

The genome of varicella-zoster virus (VZV) is a linear, double-stranded molecule of DNA composed of a long (L) region covalently linked to a short (S) region. The S region is capable of inverting relative to a fixed orientation of the L region, giving rise to two equimolar populations. We have investigated other forms of the VZV genome which are present in infected cells and packaged into nucle...

متن کامل

Separations of open-circular DNA using pulsed-field electrophoresis.

The effect of high electric fields on the gel-electrophoretic mobility of open-circular DNA in agarose differs dramatically from that on linear molecules of the same molecular weight. At high fields, sufficiently large circular forms are prevented from migrating into the gel whereas linear molecules and smaller circular DNAs migrate normally. This effect is strongly field dependent, affecting c...

متن کامل

Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome

The mitochondrial genome exists in numerous structural conformations, complicating the study of mitochondrial DNA (mtDNA) metabolism. Here, we describe the development of 2D intact mtDNA agarose gel electrophoresis (2D-IMAGE) for the separation and detection of approximately two-dozen distinct topoisomers. Although the major topoisomers were well conserved across many cell and tissue types, uni...

متن کامل

Cytotoxic activity of curcumin towards CCRF-CEM leukemia cells and its effect on DNA damage.

The cytotoxic activity of curcumin towards CCRF-CEM human T-cell leukemia cells was measured by the MTT assay. Tumor cells were more sensitive to the cytotoxic activity of curcumin or curcumin-Cu (II)compared to normal cells, and the IC(50) of curcumin towards CCRF-CEM cells was 8.68 microM, and that of curcumin-Cu (II) was 8.14 microM. The cell cycle distribution of curcumin-treated CCRF-CEM c...

متن کامل

Direct observation of DNA knots using a solid-state nanopore.

Long DNA molecules can self-entangle into knots. Experimental techniques for observing such DNA knots (primarily gel electrophoresis) are limited to bulk methods and circular molecules below 10 kilobase pairs in length. Here, we show that solid-state nanopores can be used to directly observe individual knots in both linear and circular single DNA molecules of arbitrary length. The DNA knots are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 50 1  شماره 

صفحات  -

تاریخ انتشار 1984